10(y^2+4y-6)=180

Simple and best practice solution for 10(y^2+4y-6)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10(y^2+4y-6)=180 equation:



10(y^2+4y-6)=180
We move all terms to the left:
10(y^2+4y-6)-(180)=0
We multiply parentheses
10y^2+40y-60-180=0
We add all the numbers together, and all the variables
10y^2+40y-240=0
a = 10; b = 40; c = -240;
Δ = b2-4ac
Δ = 402-4·10·(-240)
Δ = 11200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{11200}=\sqrt{1600*7}=\sqrt{1600}*\sqrt{7}=40\sqrt{7}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40\sqrt{7}}{2*10}=\frac{-40-40\sqrt{7}}{20} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40\sqrt{7}}{2*10}=\frac{-40+40\sqrt{7}}{20} $

See similar equations:

| 25°=15x+16x | | 4x-25=85 | | 25°+(15x+16x)=180° | | 4x+11=−1 | | 175m-125m+48,000=50,250-200m | | 0.5x+0.4=1.9 | | 15x+16x+25°=180° | | 15x+16x=155°+25° | | 4x-11=6x+2 | | x12=125 | | 5/9÷x=33/4 | | X2-400=40x | | 0.64=0.14+0.5x | | 57.6=0.14+0.5x | | 0.3x−4.2=2.13+5.67 | | X2+400=40x | | 14=7/2y | | p=300×51 | | 5h+20=0 | | 5h+2=0 | | 7(x-2)-4=-6(-2x+2)-9x | | 5/9/x=343/ | | 8x-2+2(4x+7)=-2(x+1) | | 180-(x+16)=x | | -8+4(1+2x)=-6x-14 | | 5+1/2+0.6x=16 | | 4x+8=10x | | 5n-10=11-2n | | 2x+70=5x-13 | | 9x-49+5x-23=180 | | 0.25(60)+10x=0.15(60+x) | | 8(x-3)+8=7x-3 |

Equations solver categories